


Exercise Sheet 9  Satellites, Object Oriented Programming  

import de.physolator.usr.components.*;
import static de.physolator.usr.components.VectorMath.*;
...

public class Satellites extends PhysicalSystem {
...

@V(unit = "m", derivative = "v")
public Vector2D r = new Vector2D(4e7, 0);

@V(unit = "m/s", derivative = "a")
public Vector2D v = new Vector2D(0, 4000);

@V(unit = "m/s^2")
public Vector2D a = new Vector2D(0, 0);

...
}

Note, that the class  Vector2D is part of the Java package  de.physolator.usr.components.  Therefore, the
corresponding import statement is required in the initial area of the program code.

During initialization, values must be assigned to the vector variables. Vector values are generated with the
expression:
 new Vector2D(x, y)  
In Java, this kind of expression is called a constructor invocation. The constructor invocation generates a
vector and then assigns two values x and y to the vector. For r these are the values 4e7 and 0, for v they
are 0 and 4000 and for a they are 0 and 0.

In exercise sheet  8, annotations were used to define derivation relationships between scalar variables.
Derivation relationships can also be defined between vectors. In the above program code, the annotations
determine that v is the first derivative of r and that a is the first derivative of v. This is done in the same
way as for scalar variables. Physical units can also be assigned to vectors. For example, if it is specified
for the physical variable  r that the physical unit is  to be  m  (meters),  then this not only means that  r
receives the unit m, but it also means that the parts of r, namely r.x and r.y, also receive this unit.

From your Java program you can access the x- and y-parts of your vectors. Therefore, you can perform
common  scalar  arithmetic  operations  with  these  double-values  (addition,  multiplication,  sinus,...).
Alternatively, you can also calculate on the level of the vectors. Rewrite the formulas in method f so that
you work with vector operations. The class VectorMath provides vector operations for this purpose. The
vector operations are listed in the following table. Use these operations when implementing the method f.

add(a,b) Vector addition. Adds two vectors (Vector2D objects). The
return value is a vector (another Vector2D objekt).

add(a,b,c)
add(a,b,c,d)
add(a,b,c,d,e)
...

Vector addition with three or more vectors.

sub(a,b) Vector subtraction

mult(p,a) Scalar product. Multiplies the scalar double value p with 
vector a. The return value is a vector.

abs(a) Computes the amount of some vector a. The return value 
is a scalar value of type double.

normalize(a) Normalization. Computes a vector with the same direction
as a, but with an amount of 1. 

dist(a,b) Distance between two points a and b. a and b are vectors 
of type Vector2D, the return value is of type double.

2 



Aufgabenblatt 9  Satellites, Object Oriented Programming  

When programming physical systems for the Physolator, there is one limitation: you must not assign a
vector p to a vector v by an ordinary assignment:

v = p; 

Instead you have to invoke the set-method of vector v and pass p as parameter of the set-method.

v.set(p); 

Note this  rule  when implementing the  method  f.  This  rule  applies  only to  vectors,  not  to  the  scalar
variables of type double. If you want to assign a value to any variable z of the type double, this is done
with an assignment of the form z=....;

In the previous implementation, the satellite was displayed graphically using the  MechanicsTVG class.
The command

t.addPointMass("x", "y", "vx", "vy", "ax", "ay");

defined that a point-shaped mass is to be represented, which is defined by these six scalar variables. This
command can now be deleted without substitution. In the case of physical systems that work with vectors
with the names r,  v and a in the form shown above, the MechanicsTVG class automatically detects that
they are point-shaped masses and displays them without further action.

Exercise 2

Copy the following class CelestialBody.

import de.physolator.usr.V;
import de.physolator.usr.components.Vector2D;

public class CelestialBody {

@V(unit = "kg")
public double m = 5.974E24;

@V(unit = "m", derivative = "v")
public Vector2D r = new Vector2D(0, 0);

@V(unit = "m/s", derivative = "a")
public Vector2D v = new Vector2D(0, 0);

@V(unit = "m/s^2")
public Vector2D a = new Vector2D(0, 0);

public CelestialBody(double x, double y, double vx, double vy, double ax, double ay,
 double m) {

r.set(x,y);
v.set(vx,vy);
a.set(ax,ay);
this.m = m;

}
}

The  class  CelestialBody represents  objects  that  have  a  mass  m,  a  position  r,  a  velocity  v,  and  an
acceleration a. m is a scalar quantity and r, v and a are vectors. Physical units have already been assigned
to the appropriate physical variables and the derivation relationships are also specified.

Both the earth and the satellite are now to be described as instances of the class CelestialBody. Copy the
following program code:

3



Exercise Sheet 9  Satellites, Object Oriented Programming  

import static de.physolator.usr.components.VectorMath.*;
import static java.lang.Math.pow;
import mechanics.tvg.MechanicsTVG;
import de.physolator.usr.*;

public class Satellites extends PhysicalSystem {

@V(unit = "m^3/kg s^2")
double G = 6.67428e-11;

public CelestialBody earth = new CelestialBody(0, 0, 0, 0, 0, 0, 5.974E24);
public CelestialBody satellite = new CelestialBody(4e7, 0, 0, 4000, 0, 0, 100);

public void f(double t, double h) {
// space for your formulas

}

public void initGraphicsComponents(GraphicsComponents g, Structure s, Recorder r,
 SimulationParameters sp) {

MechanicsTVG t = new MechanicsTVG(this, s, r);
double p = 1.2e8;
t.geometry.setUserArea(-p, p, -p, p);
t.showPaths = true;
t.showVelocity = false;
t.showAcceleration = false;
t.showLabels = true;
g.addTVG(t);

}

public void initSimulationParameters(SimulationParameters s) {
s.fastMotionFactor = 20000;

}
}

Two instances of the class CelestialBody have already been created in this program code. One of the two
instances is stored in the variable  earth, the other in the variable  satellite. The constructor invocations

new CelestialBody (...) 
generate the instances of the CelestialBody class. The parameter values of the constructor calls determine
the initial values of the objects: their position r, their velocity v, their acceleration a and their mass m.

Both the earth and the satellite each have an r attribute, a  v attribute, an a attribute and an m attribute.
These attributes  can be accessed via  the  variables  earth and  satellite.  Thus,  satellite.r stands for  the
position of the satellite,  satellite.v for its speed,  satellit.a for its acceleration and satellit.m for its mass.
Analogous to this is  earth.r,  earth.v,  earth.a and earth.m stand for the position, speed, acceleration and
mass of the earth.

Calculate the acceleration of the satellite in the method f using the positions and masses of the moon and
earth!

Annotations 

The class  MechanicsTVG automatically draws all point-shaped masses of the physical system, i. e. all
physical subcomponents that have an  r component,  a  v component and an  a component.  In our case,
MechanicsTVG automatically draws earth and satellite. If, as in this case, several point-shaped masses are
drawn on the screen, there could be confusion. The assignment 

t.showLabels = true; 
ensures that the point-shaped masses are labeled with their variable names.

4 



Aufgabenblatt 9  Satellites, Object Oriented Programming  

Exercise 3

In the CelestialBody class, add the following method gravitationalAcceleration.

public Vector2D gravitationalAcceleration(Vector2D p) {
return ...; // space for your program code

}

The gravitationalAcceleration method is part of every CelestialBody object. The method is intended to
determine which gravitational acceleration a point-shaped mass experiences through the  CelestialBody
object when the point-shaped mass is located at the position p. The CelestialBody object determines the
gravitational  acceleration  of  a  point-shaped  mass.  The  method  accesses  the  object  attributes  of  the
CelestialBody object  r,  v,  a and  m and the parameter  p and calculates the acceleration in the form of a
vector.  The calculated  acceleration is returned as the method's  return value.  Recommendation: In the
CelestialBody class, add a physical variable G with the gravitational constant. 

This new method in the class  CelestialBody can now be used in all  CelestialBody objects. In the class
Satellites,  earth  gravitationalAcceleration(p) can  be  used  to  determine  the  gravitational  acceleration
originating from the earth at any point p and, in analogy satellite.gravitationalAcceleration(p) computes
the gravitational acceleration originating from the satellite. Use this new method when programming f!

Exercise 4

So far, only one satellite orbits the Earth. Now, five satellites are to orbit the Earth. To do this, create five
variables satellite1, satellite2,... satellite5 in the class Satellites and assign different starting positions and
speeds to these satellites! Make sure that their acceleration is calculated in method f!

5


